Monday, October 24, 2016

Gleichung des gleitenden mittelwertfilters

Überblick Ein einfacher verschiebender Durchschnitt ist ein Durchschnitt der Daten, die über einen Zeitraum berechnet werden. Der gleitende Durchschnitt ist der populärste Preisindikator, der in technischen Analysen verwendet wird. Dieser Durchschnitt kann mit jedem Preis einschließlich der Hi, Low, Open oder Close verwendet werden, und kann auch auf andere Indikatoren angewendet werden. Ein gleitender Durchschnitt glättet eine Datenreihe, die in einem volatilen Markt sehr wichtig ist, da sie hilft, wichtige Trends zu identifizieren. Dundas Diagramm für ASP hat vier Arten bewegliche Durchschnitte einschließlich einfach, exponentiell. Dreieckig. Und Gewichtet. Der wichtigste Unterschied zwischen den obigen gleitenden Durchschnitten ist, wie sie ihre Datenpunkte gewichten. Wir empfehlen Ihnen, mit den Finanzformeln zu lesen, bevor Sie fortfahren. Mithilfe von Finanzformeln erhalten Sie eine ausführliche Erläuterung, wie Sie Formeln verwenden können, und erläutert auch die verschiedenen Optionen, die Ihnen beim Anwenden einer Formel zur Verfügung stehen. Ein Liniendiagramm ist eine gute Wahl, wenn ein einfacher gleitender Durchschnitt angezeigt wird. Finanzinterpretation: Der "Moving Average" wird verwendet, um die Sicherheitspreise mit dem gleitenden Durchschnitt zu vergleichen. Das wichtigste Element, das bei der Berechnung des gleitenden Durchschnitts verwendet wird, ist eine Zeitspanne, die dem beobachteten Marktzyklus entsprechen sollte. Der gleitende Durchschnitt ist ein nachlaufender Indikator und wird immer hinter dem Preis sein. Wenn der Preis folgt einem Trend der gleitende Durchschnitt ist sehr nah an den Wertpapieren Preis. Wenn ein Preis steigt, wird der gleitende Durchschnitt wahrscheinlich aufgrund des Einflusses der historischen Daten bleiben. Berechnung: Der gleitende Mittelwert wird nach folgender Formel berechnet: In der vorhergehenden Formel stellt der n-Wert eine Zeitperiode dar. Die häufigsten Zeiträume sind: 10 Tage, 50 Tage und 200 Tage. Ein gleitender Durchschnitt bewegt sich, da bei jedem neuen Datenpunkt der älteste Datenpunkt gelöscht wird. Ein einfacher gleitender Durchschnitt gibt jedem Datenpunktpreis gleiches Gewicht. Beispiel In diesem Beispiel wird veranschaulicht, wie Sie einen 20-Tage-Durchschnitt mit der Formelmethode berechnen. Siehe auch FIR-Filter, IIR-Filter und die lineare Konstante-Koeffizienten-Differenzengleichung Causal Moving Average (FIR) - Filter Weve diskutierte Systeme, bei denen jede Abtastung des Ausgangssignals eine gewichtete Summe der (gewissen) der Abtastwerte des Eingangs ist. Nehmen wir ein kausal gewichtetes Summensystem, wobei Kausal bedeutet, dass ein gegebenes Ausgangssample nur von dem aktuellen Eingangssample und anderen Eingängen früher in der Sequenz abhängt. Weder lineare Systeme überhaupt noch endliche Impulsantwortsysteme müssen kausal sein. Jedoch ist Kausalität bequem für eine Art Analyse, die bald erforschen würde. Wenn wir die Eingaben als Werte eines Vektors x symbolisieren. Und die Ausgaben als entsprechende Werte eines Vektors y. Dann kann ein solches System beschrieben werden, bei dem die b-Werte ein Gewicht sind, das auf die aktuellen und früheren Eingangsabtastwerte angewendet wird, um die aktuelle Ausgangsabtastung zu erhalten. Wir können uns den Ausdruck als Gleichung vorstellen, wobei das Gleichheitszeichen gleich ist oder als Verfahrensanweisung mit dem Gleichheitszeichen Bedeutung Zuordnung. Schreiben wir den Ausdruck für jeden Ausgangsprobe als MATLAB-Schleife von Zuweisungsanweisungen, wobei x ein N-Längenvektor von Eingangsabtastwerten ist und b ein M-Längenvektor von Gewichten ist. Um mit dem Spezialfall am Anfang umzugehen, werden wir x in einen längeren Vektor xhat einbetten, dessen erste M-1 Abtastwerte Null sind. Wir werden die gewichtete Summe für jedes y (n) als inneres Produkt schreiben und einige Manipulationen der Eingänge (wie Reversieren b) zu diesem Zweck durchführen. Diese Art von System wird oft als ein gleitender Durchschnitt Filter, aus offensichtlichen Gründen. Aus unseren früheren Diskussionen sollte klar sein, dass ein solches System linear und verschiebungsinvariant ist. Natürlich wäre es viel schneller, die MATLAB-Convolution-Funktion conv () anstelle unseres mafilt () zu verwenden. Anstatt die ersten M-1 Abtastwerte des Eingangs null zu betrachten, könnten wir sie als die letzten M-1 Abtastwerte betrachten. Dies ist die gleiche wie die Behandlung der Eingabe als periodisch. Nun verwenden Sie cmafilt () als den Namen der Funktion, eine kleine Änderung der früheren mafilt () - Funktion. Bei der Bestimmung der Impulsantwort eines Systems gibt es gewöhnlich keinen Unterschied zwischen diesen beiden, da alle nicht initialen Abtastungen der Eingabe Null sind: Da ein System dieser Art linear und schichtinvariant ist, wissen wir, dass seine Wirkung auf irgendwelche Sinusoid wird nur zu skalieren und verschieben. Hier ist es wichtig, dass wir die kreisförmige Version verwenden. Die kreisförmig gefaltete Version wird verschoben und skaliert, während die Version mit gewöhnlicher Faltung am Anfang verzerrt ist. Lets sehen, was die exakte Skalierung und Verschiebung ist mit einem fft: Beide Eingang und Ausgang haben Amplitude nur bei Frequenzen 1 und -1, wie es sein sollte, da der Eingang war ein Sinus und das System war linear. Die Ausgangswerte sind um ein Verhältnis von 10,6251 / 8 1,3281 größer. Das ist der Gewinn des Systems. Was ist mit der Phase Wir müssen nur schauen, wo die Amplitude ungleich Null ist: Der Eingang hat eine Phase von pi / 2, wie wir wollten. Die Ausgangsphase wird um eine zusätzliche 1,0594 (mit umgekehrtem Vorzeichen für die negative Frequenz) oder etwa 1/6 eines Zyklus nach rechts verschoben, wie wir im Diagramm sehen können. Nun können wir eine Sinuskurve mit der gleichen Frequenz (1) ausprobieren, aber statt der Amplitude 1 und der Phase pi / 2 versuchen wir die Amplitude 1.5 und die Phase 0. Wir wissen, dass nur Frequenz 1 und -1 Amplitude ungleich Null haben (15.9377 / 12.0000) ist 1.3281 - und für die Phase ist es wieder um 1.0594 verschoben. Wenn diese Beispiele typisch sind, können wir die Wirkung unseres Systems vorhersagen (Impulsantwort .1 .2 .3 .4 .5) auf jedem Sinus mit der Frequenz 1 - wird die Amplitude um den Faktor 1,3281 erhöht und die (positive Frequenz) Phase um 1,0594 verschoben. Wir können die Wirkung dieses Systems auf Sinusoide anderer Frequenzen mit denselben Methoden berechnen. Aber es gibt einen viel einfacheren Weg, und eine, die den allgemeinen Punkt. Da die (zirkuläre) Faltung im Zeitbereich eine Multiplikation im Frequenzbereich bedeutet, folgt daraus, daß mit anderen Worten die DFT der Impulsantwort das Verhältnis der DFT des Ausgangs zu der DFT des Eingangs ist. In dieser Beziehung sind die DFT-Koeffizienten komplexe Zahlen. Wegen der abs (c1 / c2) abs (c1) / abs (c2) für alle komplexen Zahlen c1, c2 gibt diese Gleichung an, dass das Amplitudenspektrum der Impulsantwort immer das Verhältnis des Amplitudenspektrums der Ausgabe zu diesem ist Des Eingangs. Im Falle des Phasenspektrums ist der Winkel (c1 / c2) - Winkel (c1) - Winkel (c2) für alle c1, c2 (mit der Maßgabe, dass sich um n2pi unterschiedliche Phasen unterscheiden). Daher wird das Phasenspektrum der Impulsantwort immer die Differenz zwischen den Phasenspektren des Ausgangs und dem Eingang sein (mit welchen Korrekturen um 2pi benötigt werden, um das Ergebnis zwischen - pi und pi zu halten). Wir können die Phaseneffekte deutlicher sehen, wenn wir die Darstellung der Phase entpacken, d. H. Wenn wir verschiedene Vielfache von 2pi hinzufügen, um die Sprünge zu minimieren, die durch die periodische Natur der Funktion angle () erzeugt werden. Obwohl die Amplitude und die Phase üblicherweise für grafische und sogar tabellarische Darstellungen verwendet werden, sind die komplexen Fourier-Koeffizienten algebraisch nützlicher, da sie eine intuitive Möglichkeit sind, über die Auswirkungen eines Systems auf die verschiedenen Frequenzkomponenten seines Eingangs nachzudenken Der einfache Ausdruck der Beziehung Der allgemeine Ansatz, den wir soeben gesehen haben, wird mit beliebigen Filtern des skizzierten Typs arbeiten, wobei jeder Ausgangssample eine gewichtete Summe eines Satzes von Eingangsabtastwerten ist. Wie bereits erwähnt, werden diese oft als Finite-Impulse-Response-Filter bezeichnet, da die Impulsantwort von Finite-Size - oder manchmal Moving-Average-Filtern ist. Wir können die Frequenzantwortcharakteristiken eines solchen Filters aus der FFT seiner Impulsantwort bestimmen, und wir können auch neue Filter mit gewünschten Eigenschaften durch IFFT aus einer Spezifikation des Frequenzgangs entwerfen. Autoregressive (IIR) - Filter Es wäre wenig Sinn, mit Namen für FIR-Filter, es sei denn, es gab eine andere Art von ihnen zu unterscheiden, und so diejenigen, die Pragmatik studiert haben, werden nicht überrascht sein zu erfahren, dass es tatsächlich eine andere große Art Des linearen zeitinvarianten Filters. Diese Filter werden manchmal rekursiv genannt, weil der Wert der vorherigen Ausgaben (sowie vorhergehende Eingaben) von Bedeutung ist, obwohl die Algorithmen im Allgemeinen unter Verwendung von iterativen Konstrukten geschrieben werden. Sie werden auch als Infinite Impulse Response (IIR) - Filter bezeichnet, weil im Allgemeinen ihre Reaktion auf einen Impuls für immer weitergeht. Sie werden auch manchmal als autoregressive Filter bezeichnet, da man die Koeffizienten als das Ergebnis einer linearen Regression verstehen kann, um Signalwerte als Funktion früherer Signalwerte auszudrücken. Die Beziehung von FIR - und IIR-Filtern ist klar in einer linearen konstanten Koeffizienten-Differenzengleichung zu sehen, d. h. eine gewichtete Summe von Ausgaben gleich einer gewichteten Summe von Eingängen zu setzen. Dies ist wie die Gleichung, die wir früher für das kausale FIR-Filter angegeben haben, außer dass wir neben der gewichteten Summe von Eingängen auch eine gewichtete Summe von Ausgängen haben. Wenn wir dies als eine Prozedur zur Erzeugung von Ausgangsabtastwerten denken wollen, müssen wir die Gleichung neu anordnen, um einen Ausdruck für den gegenwärtigen Ausgangsabtastwert y (n) zu erhalten, wobei die Konvention angenommen wird, dass a (1) 1 (z Und bs) können wir den 1 / a (1) Term loswerden: y (n) b (1) x (n) b (2) x (n-1). B (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Wenn alle anderen a (n) als a (1) Null sind, reduziert dies auf unseren alten Freund das kausale FIR-Filter. Dies ist der allgemeine Fall eines (kausalen) LTI-Filters und wird durch den MATLAB-Funktionsfilter implementiert. Es sei der Fall betrachtet, bei dem die b Koeffizienten außer b (1) null sind (anstelle des FIR-Falles, bei dem a (n) null ist): In diesem Fall wird die aktuelle Ausgabeprobe y (n) als a berechnet Gewichtete Kombination der aktuellen Eingangsabtastung x (n) und der vorhergehenden Ausgangsabtastwerte y (n - 1), y (n - 2) usw. Um eine Vorstellung davon zu erhalten, was mit solchen Filtern geschieht, Das heißt, der Stromausgangsabtastwert ist die Summe der aktuellen Eingangsabtastung und der Hälfte der vorhergehenden Ausgangsabtastung. Nun nehmen einen Eingangsimpuls durch ein paar Zeitschritte, eine zu einer Zeit. Es sollte an diesem Punkt klar sein, daß wir leicht einen Ausdruck für den n-ten Ausgabe-Abtastwert schreiben können: er ist nur (Wenn MATLAB von 0 gezählt wird, wäre dies einfach 0,5 n). Da das, was wir berechnen, die Impulsantwort des Systems ist, haben wir durch das Beispiel gezeigt, daß die Impulsantwort tatsächlich unendlich viele Proben ungleich Null haben kann. Um diesen trivialen Filter erster Ordnung in MATLAB zu implementieren, könnten wir Filter verwenden. Der Aufruf sieht folgendermaßen aus: und das Ergebnis ist: Ist dieses Geschäft wirklich noch linear? Wir können dies empirisch betrachten: Für einen allgemeineren Ansatz betrachten wir den Wert eines Ausgabebeispiels y (n). Durch sukzessives Ersetzen können wir dies so schreiben: Dies ist genau wie unser alter Freund die Faltungssummenform eines FIR-Filters mit der Impulsantwort, die durch den Ausdruck .5k geliefert wird. Und die Länge der Impulsantwort ist unendlich. Es gelten also die gleichen Argumente, die wir zeigen, dass FIR-Filter linear waren. Bisher scheint dies viel Aufhebens um nicht viel zu sein. Was ist diese ganze Untersuchung gut für gut beantworten diese Frage in Stufen, beginnend mit einem Beispiel. Es ist nicht eine große Überraschung, dass wir berechnen können eine Stichprobe Exponential durch rekursive Multiplikation. Betrachten wir einen rekursiven Filter, der etwas weniger offensichtlich macht. Dieses Mal machen wir es zu einem Filter zweiter Ordnung, so daß der Aufruf zum Filter die Form Lets hat, die den zweiten Ausgangskoeffizienten a2 auf -2cos (2pi / 40) und den dritten Ausgangskoeffizienten a3 auf 1 setzen und anschauen Die Impulsantwort. Nicht sehr nützlich als Filter tatsächlich, aber es erzeugt eine abgetastete Sinuswelle (aus einem Impuls) mit drei Multiplikations-Additionen pro Probe Um zu verstehen, wie und warum es das tut und wie rekursive Filter entworfen und analysiert werden können in Der allgemeinere Fall, müssen wir Schritt zurück und werfen Sie einen Blick auf einige andere Eigenschaften von komplexen Zahlen, auf dem Weg zum Verständnis der z transform. Exponential Filter Diese Seite beschreibt exponentielle Filterung, die einfachste und beliebteste Filter. Dies ist Teil des Abschnitts Filterung, der Teil des Leitfadens zur Fehlerdetektion und - diagnose ist. Überblick, Zeitkonstante und Analogäquivalent Der einfachste Filter ist der Exponentialfilter. Es hat nur einen Abstimmungsparameter (außer dem Probenintervall). Es erfordert die Speicherung nur einer Variablen - der vorherigen Ausgabe. Es ist ein IIR (autoregressive) Filter - die Auswirkungen einer Eingangsveränderung Zerfall exponentiell, bis die Grenzen der Displays oder Computer Arithmetik verstecken. In verschiedenen Disziplinen wird die Verwendung dieses Filters auch als 8220exponentielle Glättung8221 bezeichnet. In einigen Disziplinen wie der Investitionsanalyse wird der exponentielle Filter als 8220Exponential Weighted Moving Average8221 (EWMA) oder nur 8220Exponential Moving Average8221 (EMA) bezeichnet. Dies missbräuchlich die traditionelle ARMA 8220moving average8221 Terminologie der Zeitreihenanalyse, da es keinen Eingabehistorie gibt, der verwendet wird - nur die aktuelle Eingabe. Es ist das diskrete Zeit-Äquivalent der 8220 erster Ordnung lag8221, die üblicherweise in der analogen Modellierung von kontinuierlichen Zeitsteuerungssystemen verwendet wird. In elektrischen Schaltkreisen ist ein RC-Filter (Filter mit einem Widerstand und einem Kondensator) eine Verzögerung erster Ordnung. Bei der Betonung der Analogie zu analogen Schaltungen, ist der einzige Tuning-Parameter die 8220time constant8221, in der Regel als klein geschriebenen griechischen Buchstaben Tau () geschrieben. Tatsächlich entsprechen die Werte bei den diskreten Abtastzeiten genau der äquivalenten kontinuierlichen Zeitverzögerung mit der gleichen Zeitkonstante. Die Beziehung zwischen der digitalen Implementierung und der Zeitkonstante wird in den folgenden Gleichungen gezeigt. Exponentielle Filtergleichungen und Initialisierung Das Exponentialfilter ist eine gewichtete Kombination der vorherigen Schätzung (Ausgabe) mit den neuesten Eingangsdaten, wobei die Summe der Gewichtungen gleich 1 ist, so dass die Ausgabe mit dem Eingang im stationären Zustand übereinstimmt. Nach der bereits eingeführten Filternotation ist y (k) ay (k - 1) (1 - a) x (k) wobei x (k) die Roheingabe zum Zeitschritt ky (k) die gefilterte Ausgabe zum Zeitschritt ka ist Ist eine Konstante zwischen 0 und 1, normalerweise zwischen 0,8 und 0,99. (A-1) oder a wird manchmal die 8220-Glättungskonstante8221 genannt. Für Systeme mit einem festen Zeitschritt T zwischen Abtastwerten wird die Konstante 8220a8221 nur dann berechnet und gespeichert, wenn der Anwendungsentwickler einen neuen Wert der gewünschten Zeitkonstante angibt. Bei Systemen mit Datenabtastung in unregelmäßigen Abständen muss bei jedem Zeitschritt die exponentielle Funktion verwendet werden, wobei T die Zeit seit dem vorhergehenden Abtastwert ist. Der Filterausgang wird normalerweise initialisiert, um dem ersten Eingang zu entsprechen. Wenn die Zeitkonstante 0 nähert, geht a auf Null, so dass keine Filterung 8211 der Ausgang dem neuen Eingang entspricht. Da die Zeitkonstante sehr groß wird, werden Ansätze 1, so dass neue Eingabe fast ignoriert wird 8211 sehr starkes Filtern. Die obige Filtergleichung kann in folgendes Vorhersagekorrektor-Äquivalent umgeordnet werden: Diese Form macht deutlich, dass die variable Schätzung (Ausgabe des Filters) unverändert von der vorherigen Schätzung y (k-1) plus einem Korrekturterm basiert wird Auf die unerwartete 8220innovation8221 - die Differenz zwischen dem neuen Eingang x (k) und der Vorhersage y (k-1). Diese Form ist auch das Ergebnis der Ableitung des Exponentialfilters als einfacher Spezialfall eines Kalman-Filters. Die die optimale Lösung für ein Schätzproblem mit einem bestimmten Satz von Annahmen ist. Schrittantwort Eine Möglichkeit, den Betrieb des Exponentialfilters zu visualisieren, besteht darin, sein Ansprechen über die Zeit auf eine Stufeneingabe aufzuzeichnen. Das heißt, beginnend mit dem Filtereingang und dem Ausgang bei 0 wird der Eingangswert plötzlich auf 1 geändert. Die resultierenden Werte sind nachstehend aufgetragen: In dem obigen Diagramm wird die Zeit durch die Filterzeitkonstante tau geteilt, so daß man leichter prognostizieren kann Die Ergebnisse für einen beliebigen Zeitraum, für jeden Wert der Filterzeitkonstante. Nach einer Zeit gleich der Zeitkonstante steigt der Filterausgang auf 63,21 seines Endwertes an. Nach einer Zeit gleich 2 Zeitkonstanten steigt der Wert auf 86,47 seines Endwertes an. Die Ausgänge nach Zeiten gleich 3,4 und 5 Zeitkonstanten sind jeweils 95,02, 98,17 bzw. 99,33 des Endwerts. Da der Filter linear ist, bedeutet dies, dass diese Prozentsätze für jede Größenordnung der Schrittänderung verwendet werden können, nicht nur für den hier verwendeten Wert 1. Obwohl die Stufenantwort in der Theorie aus praktischer Sicht eine unendliche Zeit in Anspruch nimmt, sollte man an den exponentiellen Filter 98 bis 99 8220done8221 denken, der nach einer Zeit gleich 4 bis 5 Filterzeitkonstanten reagiert. Variationen des Exponentialfilters Es gibt eine Variation des Exponentialfilters mit dem Namen 8220nonlinearem exponentiellem Filter8221 Weber, 1980. Es soll starkes Rauschen innerhalb einer bestimmten 8220typical8221 Amplitude filtern, reagiert aber schneller auf größere Änderungen. Copyright 2010 - 2013, Greg Stanley Teilen Sie diese Seite: Moving Average Dieses Beispiel zeigt Ihnen, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Eine Bewegung wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Gefällt Ihnen diese Website? Bitte teilen Sie diese Seite auf GoogleThe Moving Average Block berechnet den Durchschnitt einer benutzerdefinierten Anzahl von Samples des Eingangssignals, die alle gleichmäßig beabstandet sind. Der Durchschnitt bewegt sich in der Zeit, da bei jedem Abtastzeitpunkt die älteste Abtastung durch eine neue Abtastprobe ersetzt wird, gemäß dem letzten Ein-Aus-Prinzip. Dieses digitale gleitende Mittelfilter wird durch die folgende Gleichung 1) dargestellt: wobei k die aktuelle Abtastzahl (k 1, 2, 3) ist, y das Ausgangssignal, u das Eingangssignal und ns die Gesamtzahl von ist Proben. Die tatsächliche Zeit im k-ten Abtastintervall entspricht kt s. Wobei t s die Abtastzeit ist. Der Anwender muss folgende Blockparameter angeben: die Anzahl der Abtastwerte n s die Abtastzeit t s der Anfangswert des Signals. Der Anfangswert des Signals ist erforderlich, um transiente Fehler während der ersten n s Abtastwerte in einer Simulation zu verhindern. 1) Beachten Sie, dass in der Praxis die Gleichung für den gleitenden Mittelwertfilter mit Hilfe eines diskreten Zustandsraumblocks wie folgt implementiert wurde: Hier wurde x als Zwischenzustandsvariable eingeführt. Die letzte in, first out-Aktion findet in der ersten Gleichung statt, während die eigentliche Mittelung in der zweiten durchgeführt wird. Wenn man diese Gleichung für eine bestimmte Folge von k-Werten auflöst, ergibt sich die einfache y (k) - Gleichung für den gleitenden mittleren Filter, der früher diskutiert wurde.


No comments:

Post a Comment